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概要
Arya による 2022 年の論文 [1] では完全非線形放物型方程式に対する解の内在的 Harnack 不
等式を, 勾配変数に関してある増大条件を課すことで導出した. さらに, Arya–Julin は 2025 年
の論文 [2]においてその結果を応用して Hölder評価を得た. 本講演では, これらの先行研究にお
ける内在的 Harnack不等式と Hölder評価を示すための仮定が緩和できることを報告する.

1 導入
本研究では, 以下の完全非線形放物型方程式に対する粘性解を対象とする:

ut + F
(
D2u,Du, x, t

)
= 0. (1)

粘性解とは, u 自身に微分可能性を仮定しない一種の弱解であり, 定義は以下の通りである. また, 以
降は単に解といったら粘性解を指すものとする.

Definition 1.1 u ∈USC(Q) (resp. LSC(Q)) が (1) の Q 上の粘性劣解 (resp. 粘性優解) であると
は, 次の性質が成り立つことである:

φ ∈ C2,1(Q) に対し, u− φ が (x0, t0) ∈ Q で局所最大値 (resp. 局所最小値) をとるならば,

φt(x0, t0) + F
(
D2φ(x0, t0), Dφ(x0, t0), x0, t0

)
≤ 0 (resp. ≥ 0)

が成り立つ.

特に, u ∈ C(Q) が Q上の粘性劣解かつ粘性優解のとき, u は Q 上の粘性解であるという.

今回は F に以下で表される一様楕円条件を課す. 任意の X,Y ∈ Sn, p ∈ Rn, x ∈ Rn, t ∈ R で
X ≥ Y のとき,

P−(X − Y ) ≤ F (X, p, x, t)− F (Y, p, x, t) ≤ P+(X − Y )

が成り立つ. ここで P± は以下で定義される Pucci 作用素であり, 0 < λ ≤ Λ < ∞ は固定された値
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で楕円定数と呼ばれる.

P+(X) := sup
λI≤A≤ΛI

{−tr(AX)},

P−(X) := inf
λI≤A≤ΛI

{−tr(AX)}.

この一様楕円条件は F が二階微分に関して上下から一様に抑えられることを仮定している. 以下で
はこの楕円定数 λ, Λと空間次元 nにのみ依存する定数を普遍定数と呼ぶことにする.

本研究はこの方程式に対する Harnack 不等式を対象とする. 放物型方程式に対する Harnack 不
等式とは, 典型的には, 過去の解の値を未来の値で評価する不等式であり, それを用いて Hölder連続
性などの正則性を導くことができる. この意味で Harnack 不等式は最も基礎的な評価の一つであり,

完全非線形放物型方程式に対しては 1992 年の Wang による結果 [6]が初期の代表例として挙げられ
る. また, この評価は初期条件や境界条件に依存しない, 完全に内部のみの評価である. 特に放物型の
場合, その証明には Imbert–Silvestre による教科書 [7] に見られるような stack of cubes と呼ばれる
手法が重要な役割を果たす.

そして今回特に扱うのはこの F が勾配に関して超線型的に成長するものである. つまり任意の
p ∈ Rn, x ∈ Rn, t ∈ R に対して次が成り立つ:

|F (0, p, x, t)| ≤ ϕ(|p|). (2)

ここで ϕ : [0,∞) → (0,∞) は狭義単調増加で, (0,∞) において局所 Lipschitz 連続な関数であり,

η : (0,∞) → [1,∞) を用いて次のように表される:

ϕ(s) := sη(s).

η が有界だと, 方程式は勾配項に関して高々線型成長なので標準的な結果 [6] に含まれる. よって以
下では lims→∞ η(s) = +∞ として話を進める. つまり, 線型増大 s に加えて η(s) の分だけ増大が
大きいので, η が超線型の度合いを表しているといえる.

η の典型的な例として多項式が思いつくが, 実際そのような研究はすでになされている. 勾配項
について多項式的に超線型な完全非線形放物型方程式に対する Harnack 不等式は Koike-Święch-

Tateyama による 2019 年の結果 [5] の Applications で述べられている. しかしながらこの論文で
は, 勾配項の係数に解の上限に由来する条件が課されているため評価は初期条件と境界条件に依存し
ている. そこで, 多項式成長ほど強い仮定を置かずに, η がどのような成長ならば依存性を克服し, 内
部評価を得ることができるかという問いが生まれる.

Arya は 2022 年の論文 [1]において, 勾配項の成長に適応した特殊な stack of cubes を構成するこ
とにより, 内部評価として内在的 Harnack 不等式を得た. そこでは η に次の 3 条件を課している.

(P1) s 7→ sη(s) は狭義単調増加で (0,∞) で局所 Lipschitz 連続である. 更に, η は (0, 1) で非増加
で (1,∞) で非減少である.

(P2)

lim
s→∞

sη′(s)

η(s)
log η(s) = 0.



(P3) Λ0 ≥ 1 が存在して任意の s, t > 0 に対して次が成り立つ:

η(st) ≤ Λ0η(s)η(t).

(P1) は問題を単純化するための仮定なので本質性は低いが, (P2) は η の増大度について, (P3) は
η の急激な増加を制限するものであり, その点でこれらの仮定は本質的である. この 3 つの仮定を最
初に導入したのは Julin の 2015 年の論文 [3]で, そこでは楕円型方程式にこの仮定で表される超線
型勾配項を加えて, 一般化 Harnack 不等式を導出した. Arya はその中で登場する解のスケーリング
補題 [3, Lemma 4.4]を放物型方程式に用いた.

では (P2) が表す増大度とは何なのだろうか. まず, η(s) = sγ とすると

lim
s→∞

sη′(s)

η(s)
log η(s) = lim

s→∞
γ2 log s = +∞

となるため, (P2) は満たさない. つまり多項式より遅い増大を対象としていることが分かる. 次に
η(s) = log s とすると

lim
s→∞

sη′(s)

η(s)
log η(s) = lim

s→∞

log log s

log s
= 0

となり (P2) は満たされる. それより遅い増大についても同様だ. 次に多項式より遅く, log s より早
い増大は何があるか考えると η(s) = (log s)k (k ∈ N) が思いつくが, これも同じく (P2) を満たす.

ではどのような増大がこの境目になるのかというと η(s) = s1/(log s)1/2 という形が得られる. 実際
に計算してみると

lim
s→∞

sη′(s)

η(s)
log η(s) =

1

2

となり, これより遅い増大では (P2) を満たし, これより早い増大では極限は発散する.

これより早く, 多項式より遅い増大というと,

η(s) = s1/(log s)α (0 < α ≤ 1/2)

はもちろんだが,

s1/ log log s, s1/ log log log s

のように対数を重ねたものはなおさら増大が早くなっていく. そこで, このような多項式より遅い任
意の η に対しても Arya と同様の内在的 Harnack 不等式を得たいというのが本研究の動機となる.

以上の動機から, 本研究では (P2), (P3) の代わりに次の (P2)′ を仮定する.

(P2)′ 任意の ε > 0 に対して

η(s) = o(sε) (s → ∞)

が成り立つ.

これはまさに多項式より遅い増大をすべて対象としている. 今後, これを劣多項式増大と呼ぶことに
する. この条件を扱う上で重要となるのが slowly varying という概念で, 定義は以下の通りである.



Definition 1.2 ℓ をある領域 [X,∞) で定義された正値可測関数とする. このとき, 任意の c > 0 に
対して

lim
x→∞

ℓ(cx)

ℓ(x)
= 1

が成り立つとき, ℓ を slowly varying (in Karamata’s sense) という.

詳しい性質は [4] にまとめられており, Julin もこの教科書を参照している. slowly varying の主要
な性質として以下が挙げられる.

• 次の式が成り立つならば ℓ は slowly varying である:

lim
x→∞

xℓ′(x)

ℓ(x)
= 0.

逆に ℓ が slowly varying ならば, 同程度の増大度をもつ ℓ̃ が存在して, ℓ̃ は上の式を満たす.

[4, Theorem 1.3.1]

• slowly varying な関数は劣多項式増大である. [4, Proposition 1.3.6]

• ℓ が劣多項式増大のとき, ℓ の多項式包絡 ℓ♯ は slowly varying である.

順番に見ていこう. 一つ目の性質から, Julin が導入した (P2) は slowly varying より強い仮定で
あることが分かる. 実際, (P2) を満たすならば η は次の式を満たし, Julin のスケーリング補題 [3,

Lemma 4.4] の証明ではこの性質が本質的に用いられている:

lim
s→∞

η
(
sη(s)

)
η(s)

= 1.

この証明には [4]の踏み込んだ命題を用いるが, 直感的には次のように理解できる. h(x) := log η(ex)

とおくと, 上の式が成り立つための臨界が h(x) = x1/2 で与えられることが分かる. これは
η(s) = s1/(log s)1/2 に対応する. したがって, 上の式が要請している増大度の臨界は, (P2) が規定す
る臨界と一致しており, 両者は本質的に同程度の成長条件を表していると考えられる.

二つ目の性質は, slowly varying という名称に対応する直観を与えてくれる. 一方で三つ目の性質
は, 劣多項式増大の関数の中には slowly varying でないものも存在するが, それらも多項式包絡をと
ることで slowly varying な関数に上から支配されることを示している. これは本研究の主要な補題
の一つである.

ここでいう ℓ : [X,∞) → (0,∞) の多項式包絡 ℓ♯ : [X,∞) → (0,∞) は次で定義される:

ℓ♯(s) := inf
a,γ

{
a sγ : a τγ ≥ ℓ(τ) for all τ ∈ [X,∞)

}
.

η に (P2)′ を仮定し, その多項式包絡を η♯ とすると η♯ ≥ η であるため, (2) における η を η♯ に置
き換えた評価も成り立つ. また, η♯ を小さい方の区間においても適切に定義すれば, η♯ が (P1) を満
たすようにすることもできる.

したがって一般性を失わずに η を slowly varying と仮定できる. 本研究の新規性は, slowly

varying に関するこれらの性質を本質的に用いる点にあり, それを Arya が設計した特殊な stack of

cubes と組み合わせることにより主定理を得る.



2 主定理
主定理は以下の内在的 Harnack 不等式であり, [1, Theorem 1.2] の拡張となっている.

Theorem 2.1 (P1) と (P2)′ を仮定し, u ∈ C(Q2) を (1) の Q2 上の正値粘性解とする. このとき
普遍定数 C > 1, c0 ∈ (0, 1) が存在して, 任意の

ρ ∈
(
0,

c0
θ(u(0, 0))

)
に対して次が成り立つ:

sup
A−

ρ

u(x, t) ≤ Cu(0, 0).

ここで

θ(A) :=
sup{t > 0 : t/η∗(t) ≤ A}

A
, η∗(t) := sup

s>0

η(ts)

η(s)
,

A−
ρ :=

[
−ρcn

2
,
ρcn
2

]n
×
[
−ρ2 +

(ρcn)
2

4
,−ρ2 +

(ρcn)
2

2

]
.

また cn ∈ (0, 1) は次元のみに依存する定数である.

評価を得られる範囲が解の値によって決まるため, この結果は内在的と呼ばれる.

主定理の系として以下の Hölder 評価を得る. これは [2, Theorem 1.3] の拡張となっている.

Corollary 2.2 (P1) と (P2)′ を仮定し, u ∈ C(Q2) を (1) の Q2 上の正値粘性解とする. このとき
普遍定数 C > 1, α > 0 が存在して, 任意の (x, t), (y, s) ∈ Q1 に対して次が成り立つ:

|u(x, t)− u(y, s)| ≤ C‖u‖L∞(Q2) θ
(
‖u‖L∞(Q2)

) (
|x− y|+ |t− s|1/2

)α

.
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